Oil supply

Long term prediction of unconventional oil production

Publication date:
2010-01-01
First published in:
Energy Policy
Authors:
S.H. Mohr, G.M. Evans
Abstract:

Although considerable discussion surrounds unconventional oil's ability to mitigate the effects of peaking conventional oil production, very few models of unconventional oil production exist. The aim of this article was to project unconventional oil production to determine how significant its production may be. Two models were developed to predict the unconventional oil production, one model for in situ production and the other for mining the resources. Unconventional oil production is anticipated to reach between 18 and 32 Gb/y (49–88 Mb/d) in 2076–2084, before declining. If conventional oil production is at peak production then projected unconventional oil production cannot mitigate peaking of conventional oil alone.

Published in: Energy Policy, Volume 38, Issue 1, January 2010, Pages 265-276
Available from: ScienceDirect

An assessment of oil supply and its implications for future prices

Publication date:
1998-06-01
First published in:
Natural Resources Research
Authors:
D.J. Santini
Abstract:

This paper examines three issues related to both the U.S. and world oil supply: (1) the nature of the long-term, postpeak production profile for the U.S. and, by inference, other regions (the Hubbert curve is used as a “strawman” model); (2) implications on U.S. energy security of using a modified Hubbert-type conceptual model of prepeak production, testing the adequacy of Latin America to be the primary source of U.S. oil imports; and (3) the cyclic behavior of oil prices. it shows that U.S. production will exhibit a more attenuated decline than that simulated by the Hubbert curve and not decline to zero. it asserts that U.S. production is better predicted by past reserves than past production, but that this argument does not apply to nations that keep a much larger proportion of reserves in the ground. Such nations could considerably expand production without any growth in reserves. The paper concedes that the potential total production for these nations could be examined with a Hubbert curve model linked to reserves, but with great uncertainty. Such an uncertain optimistic forecast predicts that the cumulative production of Latin America could far exceed that of the United States. Nevertheless, a statistical model of oil prices since 1870 implies that real wellhead oil prices in the United States are on a long-term upward path, underlying a much more “noisy” cyclical pattern estimated to include 22- and 27-year cycles. The statistical model predicts a severe oil shock within a few years (of 1998) but also predicts that through 2030, real oil prices will not reach 1981 levels again. The paper examines U.S. and world trends in seismic exploration, drilling locations and depths, drilling costs, oil/gas reserves, oil/gas use rates, and oil demand. After taking these factors into consideration, it concludes that the statistical model of oil prices cannot be disputed, despite its lack of basis in economic theory.

Published in: Natural Resources Research, Volume 7, Issue 2, Pages 101-121
Available from: SpringerLink

Assessing the date of the global oil peak: The need to use 2P reserves

Publication date:
2007-12-01
First published in:
Energy Policy
Authors:
R. Bentley et al
Abstract:

Combining geological knowledge with proved plus probable (‘2P’) oil discovery data indicates that over 60 countries are now past their resource-limited peak of conventional oil production. The data show that the global peak of conventional oil production is close.

Many analysts who rely only on proved (‘1P’) oil reserves data draw a very different conclusion. But proved oil reserves contain no information about the true size of discoveries, being variously under-reported, over-reported and not reported. Reliance on 1P data has led to a number of misconceptions, including the notion that past oil forecasts were incorrect, that oil reserves grow very significantly due to technology gain, and that the global supply of oil is ensured provided sufficient investment is forthcoming to ‘turn resources into reserves’. These misconceptions have been widely held, including within academia, governments, some oil companies, and organisations such as the IEA.

In addition to conventional oil, the world contains large quantities of non-conventional oil. Most current detailed models show that past the conventional oil peak the non-conventional oils are unlikely to come on-stream fast enough to offset conventional's decline. To determine the extent of future oil supply constraints calculations are required to determine fundamental rate limits for the production of non-conventional oils, as well as oil from gas, coal and biomass, and of oil substitution. Such assessments will need to examine technological readiness and lead-times, as well as rate constraints on investment, pollution, and net-energy return.

Published in: Energy Policy, Volume 35, Issue 12, December 2007, Pages 6364-6382
Available from: ScienceDirect

Syndicate content